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Motivation

* First-class automatic differentiation (AD) 1s a desirable language S P R B "SR e Y

samples = razor.hmc_sam
obs

Require: o, (3: step size hyperparameters

feature used throughout the machine learning literature (see right); - randomly il

2: while not done do

samples = razor.hmc sample
:  Sample batch of tasks 7; ~ p(T) obs_p = = plel

:  for all 7; do

e Many modern machine learning frameworks (JAX, PyTorch, and o oweara 0N
JuliaDiff [4]) implement first-class AD using the tagged forward- * (0= aVeLr(fo) T
mode algorithm to avoid perturbation confusion (see below) [6]; s 100 —BVo Y7 pir) £7:(J0)

dloss = jax.value_and_grad(loss
dloss = jax.value_and_grad(loss, has_aux=True, argnums=0)

* However, despite effort, this algorithm has not been formally proven Finn et al. Model-Agnostic Meta-Learning for Chandra ct al. Designing Perceptual Puzzles by
correct, making these heavily-used systems untrustworthy. Fast Adaptation of Deep Networks. 2017. Differentiating Probabilistic Programs. 2022.

First-Class AD with Standard Dual Numbers (Bad) First-Class AD with Tagged Forward-Mode (Correct)

diff (Ax.x - (diff (ly.x+y) 1)) 1 diff (Ax.x - (diff (y.x+y) 1)) 1

= coeff ((Ax.x - (diff (Ay.x+y) 1) (1 + ¢)) = coeff; ((Ax.x- (diff y.x+y) 1)) (1 +¢))

= coeff (1 + ¢) - (diff (Ay.(1 + &) +y) 1)) = coeff, (1 + &) - (diff (Ay.(1 +¢&)+y) 1))

= coeff ((1 +¢) - (coeff (Ay.(1 +¢&)+y) (1+¢)))) = coeff; ((1 4+ &) - (coeffy, (Ay.(1 +&)+y) (1 +¢&))))

= coeff (1 + &) - (coeff (1 + &) + (1 + ¢)))) = coeff| (1 + &) - (coeff, (1 + &) + (1 + &,))))

= coeff ((1 + &) - (coeff (2 + 2¢))) Combined! = coeff; ((1 + &) - (coeff, (2 + €, + &,))) Distinct

= coeff ((1 +¢€)-2) =coeff (2+2¢) =2 K = coeff; (1 +¢)- 1) = coeff; (1 +¢) =1

Formalizing the Tagged Forward-Mode Algorithm

e Compile a high-level source language with first-class diff to a rarget Source Lanouase Compile Tarcet Lancuace
language (with an obvious implementation strategy) that can express < d-fgf . -t}gl N gG :
the tagged forward-mode algorithm using name generation; with of e e

e Source language 1s given semantics [ —]|; 1n the category of
diffeological spaces Diff [1]; Interpret Interpret

e Target language 1s given semantics [[ — ]|, in the Schanuel topos Sch . . .
= [L, Set] ;,, a well-studied semantic model for name generation [7]; Diffeological
» Compiler is proven correct using categorical logical relations. Semantics Related Semantics
Source and Target Languages Compiler Correctness

Source Language Syntax Source-to-Target Compiler
Type 2 A,B::=real |unit|AXB|A=>B e Well-typed source programs I' = M : A are compiled to well-typed
Expr D M,N::=x|re R |op|diff | () | (M,N) target programs 6(I") - (M) : 5 6(A) according to:
| fst M |snd M |Ax:A.M | MN @ (real) = dual GC(M,N)) =x < EM);
Target Language Syntax G(AXB) =6(A)XEDB) y <= E(N);
Type 2 A,B ::=dual | name |unit | AXB|A=>B|JA (A => B)=€¢A) > JE(B) ret (x,y)
Exprd M,N:=x|re€R | op|coeff | epsil | new | {) 6(r) =retr G(MN) =f < E6€M);
(M,N) |fst M|snd M|Ax:A.M G(Ax. M) = ret Ax. 6 (M) x < G(N);
MN |x<M: N|ret M GC(fst M) =x < E(M); ret x fx

€ (diff) = ret Af : dual = T dual.ret Ax : dual.

Source Language Semantics in Diff
| SUAS n < new; d < f(x + epsil n); ret coeff n d

[real]l, =R [A = B]l; = Diff([A]l,, [B],)

[unitl, = { x } [diff],(y) = d Correctness Proof by Logical Relations
Y : : : oY Theorem (Correctness). Suppose -+ M : real has [[M]; = [[r]]; for
e d: Diff(R, R) — Diff(R, R) is first-order differentiation. , 1 1
i1( ) if( ) 18 first-order differentiation some € R, then [EM)], = [ret T, .

Target Language Semantics in Sch Lemma (Fundamental Property). Consider I = M : A. For any pair

[dual]l, =D [coeff M N1, = coeff o ([M],, [N],) (v1,7,) € 7 (1), we get (IM1l; ey, [EM)], o7, E 5’7‘7(14).
[name]l, = A [epsil M]l, = epsil - [M]], e Proven by categorical logical relations [5] indexed by Kripke worlds
[T AL, = T[A], [newl, = new o !\ (stmilar to [3]) of finite sets of tags:
o nREr R S | 05| .
7 = cotyar( = + X) s the name generation monad [7], 7(reahX) = { (f.9) € KR.D) | gi3) = 3 = fuex] [ 10
e A(X) = X1sthe names object [7]; SCX 05 xeS
e newy( x ) = [l,inry {( * )] generates a fresh name [7]; &(real)(X) = {(f, 2) €EKR,ID)|g=npeh,(f,h) & %(real)(X)}

e Dual bers D, coeff : A XD — D, and epsil : A — D are: . :
ual numbers — > and epsit. A = o are with K(X,F) = Diff R*,X) x (P = F) and P(X) = R*® st

D(X) = {ZPSI I x € RIX] | ps € IR} P(f) pads with zeroes.
SEX - xeS , e Construct a gluing category Gl and fibration for logical relations [2]
coeffx(x,p) = p; where p = pix +p, epsil(x) =x p : Gl = Diff x Sch by pulling back the evident sub-object fibration
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