
Nominal Semantics of First-Class
Automatic Differentiation

Formalizing the Tagged Forward-Mode Algorithm

Motivation
• First-class automatic differentiation (AD) is a desirable language

feature used throughout the machine learning literature (see right);
• Many modern machine learning frameworks (JAX, PyTorch, and

JuliaDiff [4]) implement first-class AD using the tagged forward-
mode algorithm to avoid perturbation confusion (see below) [6];

• However, despite effort, this algorithm has not been formally proven
correct, making these heavily-used systems untrustworthy.

First-Class AD with Standard Dual Numbers (Bad)
𝖽𝗂𝖿𝖿 (λx . x ⋅ (𝖽𝗂𝖿𝖿 (λy . x + y) 1)) 1
= 𝖼𝗈𝖾𝖿𝖿 ((λx . x ⋅ (𝖽𝗂𝖿𝖿 (λy . x + y) 1)) (1 + ε))
= 𝖼𝗈𝖾𝖿𝖿 ((1 + ε) ⋅ (𝖽𝗂𝖿𝖿 (λy . (1 + ε) + y) 1))
= 𝖼𝗈𝖾𝖿𝖿 ((1 + ε) ⋅ (𝖼𝗈𝖾𝖿𝖿 ((λy . (1 + ε) + y) (1 + ε))))
= 𝖼𝗈𝖾𝖿𝖿 ((1 + ε) ⋅ (𝖼𝗈𝖾𝖿𝖿 ((1 + ε) + (1 + ε))))
= 𝖼𝗈𝖾𝖿𝖿 ((1 + ε) ⋅ (𝖼𝗈𝖾𝖿𝖿 (2 + 2ε)))
= 𝖼𝗈𝖾𝖿𝖿 ((1 + ε) ⋅ 2) = 𝖼𝗈𝖾𝖿𝖿 (2 + 2ε) = 2 ❌

Combined!

First-Class AD with Tagged Forward-Mode (Correct)
𝖽𝗂𝖿𝖿 (λx . x ⋅ (𝖽𝗂𝖿𝖿 (λy . x + y) 1)) 1
= 𝖼𝗈𝖾𝖿𝖿1 ((λx . x ⋅ (𝖽𝗂𝖿𝖿 (λy . x + y) 1)) (1 + ε1))
= 𝖼𝗈𝖾𝖿𝖿1 ((1 + ε1) ⋅ (𝖽𝗂𝖿𝖿 (λy . (1 + ε1) + y) 1))
= 𝖼𝗈𝖾𝖿𝖿1 ((1 + ε1) ⋅ (𝖼𝗈𝖾𝖿𝖿2 ((λy . (1 + ε1) + y) (1 + ε2))))
= 𝖼𝗈𝖾𝖿𝖿1 ((1 + ε1) ⋅ (𝖼𝗈𝖾𝖿𝖿2 ((1 + ε1) + (1 + ε2))))
= 𝖼𝗈𝖾𝖿𝖿1 ((1 + ε1) ⋅ (𝖼𝗈𝖾𝖿𝖿2 (2 + ε1 + ε2)))
= 𝖼𝗈𝖾𝖿𝖿1 ((1 + ε1) ⋅ 1) = 𝖼𝗈𝖾𝖿𝖿1 (1 + ε1) = 1 ✅

Distinct

Finn et al. Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks. 2017.

Chandra et al. Designing Perceptual Puzzles by
Differentiating Probabilistic Programs. 2022.

• Compile a high-level source language with first-class ￼ to a target
language (with an obvious implementation strategy) that can express
the tagged forward-mode algorithm using name generation;

• Source language is given semantics ￼ in the category of
diffeological spaces ￼ [1];

• Target language is given semantics ￼ in the Schanuel topos ￼
￼ , a well-studied semantic model for name generation [7];

• Compiler is proven correct using categorical logical relations.

𝖽𝗂𝖿𝖿

[[−]]1
Diff

[[−]]2 Sch
= [I, Set]pb Diffeological

Semantics
Nominal

SemanticsRelated

Interpret Interpret

Source Language
with ￼𝖽𝗂𝖿𝖿

Target Language
with Name Gen.

Compile

Source and Target Languages Compiler Correctness

Correctness Proof by Logical Relations

Lemma (Fundamental Property). Consider ￼ . For any pair
￼ , we get ￼ .

Γ ⊢ M : A
(γ1, γ2) ∈ 𝒱(Γ) ([[M]]1 ∘ γ1, [[𝒞(M)]]2 ∘ γ2) ∈ ·𝒯𝒱(A)

Theorem (Correctness). Suppose ￼ has ￼ for
some ￼ , then ￼

⋅ ⊢ M : 𝗋𝖾𝖺𝗅 [[M]]1 = [[𝗋]]1
r ∈ ℝ [[𝒞(M)]]2 = [[𝗋𝖾𝗍 𝗋]]2 .

𝒞(𝖽𝗂𝖿𝖿) = 𝗋𝖾𝗍 λf : 𝖽𝗎𝖺𝗅 ⇒ 𝒯𝖽𝗎𝖺𝗅 . 𝗋𝖾𝗍 λx : 𝖽𝗎𝖺𝗅 .
n ⇐ 𝗇𝖾𝗐; d ⇐ f(x + 𝖾𝗉𝗌𝗂𝗅 n); 𝗋𝖾𝗍 𝖼𝗈𝖾𝖿𝖿 n d

𝒞(𝗋𝖾𝖺𝗅) = 𝖽𝗎𝖺𝗅
𝒞(A × B) = 𝒞(A) × 𝒞(B)

𝒞(A ⇒ B) = 𝒞(A) ⇒ 𝒯𝒞(B)
𝒞(𝗋) = 𝗋𝖾𝗍 𝗋

𝒞(λx . M) = 𝗋𝖾𝗍 λx . 𝒞(M)
𝒞(𝖿𝗌𝗍 M) = x ⇐ 𝒞(M); 𝗋𝖾𝗍 x

𝒞(⟨M, N⟩) = x ⇐ 𝒞(M);
y ⇐ 𝒞(N);
𝗋𝖾𝗍 ⟨x, y⟩

𝒞(MN) = f ⇐ 𝒞(M);
x ⇐ 𝒞(N);
fx

Source-to-Target Compiler
• Well-typed source programs ￼ are compiled to well-typed

target programs ￼ according to:
Γ ⊢ M : A

𝒞(Γ) ⊢ 𝒞(M) : 𝒯𝒞(A)

𝒱(𝗋𝖾𝖺𝗅)(X) = {(f, g) ∈ K(ℝ, 𝔻) ∣ g(i, y) = ∑
S⊆X

∂ |S |
∂S

f(yi(x))x∈X∏
x∈S

i(x)}
ℰ(𝗋𝖾𝖺𝗅)(X) = {(f, g) ∈ K(ℝ, 𝒯𝔻) ∣ g = η𝔻 ∘ h, (f, h) ∈ 𝒱(𝗋𝖾𝖺𝗅)(X)}
with ￼ and ￼ s.t.
￼ pads with zeroes.

K(X, F) = Diff(ℝ𝔸(−), X) × (ℙ ⇒ F) ℙ(X) = ℝ𝔸(X)

ℙ(f)

• Proven by categorical logical relations [5] indexed by Kripke worlds
(similar to [3]) of finite sets of tags:

• Construct a gluing category ￼ and fibration for logical relations [2]
￼ by pulling back the evident sub-object fibration
along ￼ , and lift ￼ using￼
-lifting [3] with param. ￼ to get ￼ on ￼ ;

• Proof is then by induction, with ￼ being the main difficulty.

Gl
p : Gl → Diff × Sch

K : Diff × Sch → [I, Set] idDiff × 𝒯 ⊤ ⊤
(⟨[[−]]1, [[𝒞(−)]]2⟩, ℰ) ·𝒯 Gl

𝖽𝗂𝖿𝖿

Acknowledgements. We would like to thank the anonymous LAFI 2026 reviewers for their comments and Pedro H. Azevedo de Amorim,
Mathieu Huot, John M. Li, Cameron Moy, and Sam Staton for helpful discussions. References. [1] Huot et al. Correctness of automatic
differentiation via diffeologies and categorical gluing. 2020. [2] Katsumata. A semantic formulation of ⊤⊤-lifting and logical predicates for
computational metalanguage. 2005. [3] Krawiec et al. Provably correct, asymptotically efficient, higher-order reverse-mode automatic
differentiation. 2022. [4] Manzyuk et al. Perturbation confusion in forward automatic differentiation of higher-order functions. 2019. [5]
Mitchell and Scedrov. Notes on sconing and relators. 1992. [6] Siskind and Pearlmutter. Perturbation confusion and referential transparency:
Correct functional implementation of forward-mode AD. 2005. [7] Stark. Names and Higher-Order Functions. 1994.

Source Language Syntax
𝖳𝗒𝗉𝖾 ∋ A, B ::= 𝗋𝖾𝖺𝗅 ∣ 𝗎𝗇𝗂𝗍 ∣ A × B |A ⇒ B
𝖤𝗑𝗉𝗋 ∋ M, N ::= x ∣ 𝗋 ∈ ℝ ∣ 𝗈𝗉 ∣ 𝖽𝗂𝖿𝖿 ∣ ⟨⟩ ∣ ⟨M, N⟩

∣ 𝖿𝗌𝗍 M ∣ 𝗌𝗇𝖽 M ∣ λx : A . M ∣ MN
Target Language Syntax

𝖳𝗒𝗉𝖾 ∋ A, B ::= 𝖽𝗎𝖺𝗅 ∣ 𝗇𝖺𝗆𝖾 ∣ 𝗎𝗇𝗂𝗍 ∣ A × B |A ⇒ B ∣ 𝒯A
𝖤𝗑𝗉𝗋 ∋ M, N ::= x ∣ 𝗋 ∈ ℝ ∣ 𝗈𝗉 ∣ 𝖼𝗈𝖾𝖿𝖿 ∣ 𝖾𝗉𝗌𝗂𝗅 ∣ 𝗇𝖾𝗐 ∣ ⟨⟩

∣ ⟨M, N⟩ ∣ 𝖿𝗌𝗍 M ∣ 𝗌𝗇𝖽 M ∣ λx : A . M
∣ MN ∣ x ⇐ M; N ∣ 𝗋𝖾𝗍 M

[[𝗋𝖾𝖺𝗅]]1 = ℝ
[[𝗎𝗇𝗂𝗍]]1 = { ⋆ }

[[A ⇒ B]]1 = Diff([[A]]1, [[B]]1)
[[𝖽𝗂𝖿𝖿]]1(γ) = d

Source Language Semantics in ￼Diff

• ￼ is first-order differentiation.d : Diff(ℝ, ℝ) → Diff(ℝ, ℝ)

Target Language Semantics in ￼Sch
[[𝖽𝗎𝖺𝗅]]2 = 𝔻

[[𝗇𝖺𝗆𝖾]]2 = 𝔸
[[𝒯A]]2 = 𝒯[[A]]2

[[𝖼𝗈𝖾𝖿𝖿 M N]]2 = coeff ∘ ⟨[[M]]2, [[N]]2⟩
[[𝖾𝗉𝗌𝗂𝗅 M]]2 = epsil ∘ [[M]]2

[[𝗇𝖾𝗐]]2 = new ∘ ![[Γ]]2

• ￼ is the name generation monad [7];
• ￼ is the names object [7];
• ￼ ￼ generates a fresh name [7];
• Dual numbers ￼ , ￼ , and ￼ are:

𝒯F = colimX∈IF(− + X)
𝔸(X) = X
newX(⋆) = [1,inrX,1(⋆)]

𝔻 coeff : 𝔸 × 𝔻 → 𝔻 epsil : 𝔸 → 𝔻

𝔻(X) = {∑
S⊆X

pS∏
x∈S

x ∈ ℝ[X] ∣ pS ∈ ℝ}
coeffX(x, p) = p1 where p = p1x + p2 epsilX(x) = x

• generation

Jack Czenszak and Alexander K. Lew

